目录

Dijkstra最短路算法和最小生成树算法

Dijkstra最短路算法和最小生成树算法

Dijkstra最短路:

### **Dijkstra最短路:**

#include <bits/stdc++.h>
using namespace std;
const int N = 510;
int n, m,map[N][N],dist[N];
bool st[N];
int dijkstra()
{
	int i,j,t; 
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for (i = 0; i < n - 1; i ++ )
    {
        t = -1;
        for (j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j])) 
				t = j;
		st[t] = true;
        for (j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + map[t][j]);
    }
    if (dist[n]==0x3f3f3f3f) return -1;//有没有最短路 
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(map, 0x3f, sizeof map);
    while (m -- )
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        map[x][y] = min(map[x][y],z);//处理重边 
    }
    printf("%d\n", dijkstra());
    return 0;
}

最小生成树:

### 最小生成树:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e3+7;
int minn[N];
int g[N][N];
int vis[N];
ll sum=0;
int n,m;
void pr(){
	minn[1]=0;
	for(int i=1;i<=n;i++){
		int t=-1;
		for(int j=1;j<=n;j++){
			if(!vis[j]&&(t==-1||minn[t]>minn[j])){
				t=j;
			}
		}
		if(minn[t]==0x3f3f3f3f||t==-1){
			cout<<"orz";
			return ;
		}
		vis[t]=1;
		sum+=minn[t];
		for(int j=1;j<=n;j++){
			if(!vis[j])minn[j]=min(minn[j],g[j][t]);
		}
	}
	cout<<sum;
}
void solve(){
	cin>>n>>m;
	memset(g,0x3f,sizeof g);
	memset(minn,0x3f,sizeof minn);
	for(int i=1;i<=m;i++){
		int a,b,c;
		cin>>a>>b>>c;
		g[a][b]=min(g[a][b],c);
		g[b][a]=min(g[b][a],c);
	}
	pr();
}
int main(){
    int T=1;
    while(T--){
        solve();
    }
    return 0;
}