目录

SQL-CTE-Common-Table-Expression-详解

目录

SQL CTE (Common Table Expression) 详解

[https://csdnimg.cn/release/blogv2/dist/pc/img/activeVector.png 『Java分布式系统开发:从理论到实践』征文活动 10w+人浏览 289人参与

https://csdnimg.cn/release/blogv2/dist/pc/img/arrowright-line-White.png]( )

CTE (Common Table Expression) 详解

目录


基础概念

定义

CTE(Common Table Expression,公用表表达式)是SQL中的"命名临时结果集",通过 WITH 关键字定义,仅在当前查询中生效。

核心作用:

  • 简化复杂查询:将复杂逻辑分解为多个步骤
  • 提高可读性:使SQL语句更易理解和维护
  • 复用子查询结果:避免重复计算相同的子查询

本质特性

  • 非物理存储:不是物理表,不存储在磁盘上
  • 临时性:查询执行过程中生成的虚拟结果集
  • 作用域限制:仅在定义它的查询语句中有效
  • 自动销毁:查询结束后自动清理

基本语法结构

WITH cte_name [(column_list)] AS (
    -- CTE定义查询
    SELECT ...
)
-- 主查询
SELECT ... FROM cte_name ...;

CTE类型详解

非递归CTE(普通CTE)

特点
  • 使用 WITH 关键字
  • 单一子查询,不引用自身
  • 一次性执行,结果供主查询使用
基础示例
-- 示例1:计算订单统计信息
WITH order_stats AS (
    SELECT 
        AVG(amount) as avg_amount,
        MAX(amount) as max_amount,
        COUNT(*) as total_orders
    FROM orders
    WHERE order_date >= '2024-01-01'
)
SELECT 
    o.order_id,
    o.amount,
    os.avg_amount,
    CASE 
        WHEN o.amount > os.avg_amount THEN '高于平均'
        ELSE '低于平均'
    END as amount_category
FROM orders o
CROSS JOIN order_stats os
WHERE o.order_date >= '2024-01-01';
多个CTE示例
-- 示例2:多个CTE协同工作
WITH 
high_value_customers AS (
    SELECT customer_id, SUM(amount) as total_spent
    FROM orders
    GROUP BY customer_id
    HAVING SUM(amount) > 10000
),
recent_orders AS (
    SELECT customer_id, COUNT(*) as recent_order_count
    FROM orders
    WHERE order_date >= CURRENT_DATE - INTERVAL '30 days'
    GROUP BY customer_id
)
SELECT 
    c.customer_name,
    hvc.total_spent,
    COALESCE(ro.recent_order_count, 0) as recent_orders
FROM customers c
JOIN high_value_customers hvc ON c.customer_id = hvc.customer_id
LEFT JOIN recent_orders ro ON c.customer_id = ro.customer_id
ORDER BY hvc.total_spent DESC;

递归CTE

核心结构

递归CTE必须包含两个部分:

  1. 锚点成员(Anchor Member):递归的起始点,非递归查询
  2. 递归成员(Recursive Member):引用CTE自身的查询
执行逻辑
  1. 执行锚点成员,获得初始结果集
  2. 递归成员使用当前结果集查询新数据
  3. 将新结果添加到结果集中
  4. 重复步骤2-3,直到递归成员返回空结果
  5. 返回完整的结果集
基础递归示例
-- 示例1:生成数字序列
WITH RECURSIVE number_series AS (
    -- 锚点成员:起始值
    SELECT 1 as n
    UNION ALL
    -- 递归成员:递增逻辑
    SELECT n + 1
    FROM number_series
    WHERE n < 10  -- 终止条件
)
SELECT * FROM number_series;
树形结构查询示例
-- 示例2:组织架构查询(查找某员工及其所有下属)
WITH RECURSIVE employee_hierarchy AS (
    -- 锚点成员:指定的管理者
    SELECT 
        employee_id,
        employee_name,
        manager_id,
        0 as level,
        CAST(employee_name AS VARCHAR(1000)) as path
    FROM employees
    WHERE employee_id = 1001  -- 起始员工ID
    
    UNION ALL
    
    -- 递归成员:查找下属
    SELECT 
        e.employee_id,
        e.employee_name,
        e.manager_id,
        eh.level + 1,
        CAST(eh.path || ' -> ' || e.employee_name AS VARCHAR(1000))
    FROM employees e
    JOIN employee_hierarchy eh ON e.manager_id = eh.employee_id
    WHERE eh.level < 5  -- 防止无限递归
)
SELECT 
    employee_id,
    employee_name,
    level,
    path as hierarchy_path
FROM employee_hierarchy
ORDER BY level, employee_name;
向上追溯示例
-- 示例3:向上追溯管理链
WITH RECURSIVE management_chain AS (
    -- 锚点成员:指定员工
    SELECT 
        employee_id,
        employee_name,
        manager_id,
        0 as level_up
    FROM employees
    WHERE employee_id = 2001  -- 起始员工
    
    UNION ALL
    
    -- 递归成员:查找上级管理者
    SELECT 
        e.employee_id,
        e.employee_name,
        e.manager_id,
        mc.level_up + 1
    FROM employees e
    JOIN management_chain mc ON e.employee_id = mc.manager_id
)
SELECT * FROM management_chain ORDER BY level_up;

语法与执行机制

PostgreSQL CTE执行机制

物化控制

PostgreSQL提供了对CTE物化的精确控制:

-- 强制物化(默认行为)
WITH cte_name AS MATERIALIZED (
    SELECT expensive_calculation() FROM large_table
)
SELECT * FROM cte_name 
UNION ALL 
SELECT * FROM cte_name;  -- 复用已计算的结果

-- 禁止物化(内联优化)
WITH cte_name AS NOT MATERIALIZED (
    SELECT * FROM small_table WHERE condition
)
SELECT * FROM cte_name WHERE additional_condition;
执行计划分析
-- 查看CTE执行计划
EXPLAIN (ANALYZE, BUFFERS) 
WITH sales_summary AS (
    SELECT 
        product_id,
        SUM(quantity) as total_quantity,
        SUM(amount) as total_amount
    FROM sales
    WHERE sale_date >= '2024-01-01'
    GROUP BY product_id
)
SELECT 
    p.product_name,
    ss.total_quantity,
    ss.total_amount
FROM products p
JOIN sales_summary ss ON p.product_id = ss.product_id;

递归CTE的终止机制

自动终止条件
  • 递归成员返回空结果集
  • 达到系统递归深度限制
  • 满足用户定义的终止条件
防止无限递归的策略
-- 策略1:使用计数器限制递归深度
WITH RECURSIVE limited_recursion AS (
    SELECT id, parent_id, name, 0 as depth
    FROM categories
    WHERE parent_id IS NULL
    
    UNION ALL
    
    SELECT c.id, c.parent_id, c.name, lr.depth + 1
    FROM categories c
    JOIN limited_recursion lr ON c.parent_id = lr.id
    WHERE lr.depth < 10  -- 限制最大深度
)
SELECT * FROM limited_recursion;

-- 策略2:使用路径检测避免循环
WITH RECURSIVE path_tracking AS (
    SELECT 
        id, 
        parent_id, 
        name,
        ARRAY[id] as path
    FROM categories
    WHERE parent_id IS NULL
    
    UNION ALL
    
    SELECT 
        c.id, 
        c.parent_id, 
        c.name,
        pt.path || c.id
    FROM categories c
    JOIN path_tracking pt ON c.parent_id = pt.id
    WHERE NOT (c.id = ANY(pt.path))  -- 避免循环
)
SELECT * FROM path_tracking;

性能考虑与优化

CTE vs 子查询性能对比

何时使用CTE
-- ✅ 推荐:需要多次引用相同结果时
WITH expensive_calc AS (
    SELECT 
        customer_id,
        complex_calculation(data) as result
    FROM large_table
    WHERE complex_condition
)
SELECT c1.customer_id, c1.result, c2.result
FROM expensive_calc c1
JOIN expensive_calc c2 ON c1.customer_id = c2.customer_id + 1;

-- ❌ 不推荐:简单的一次性查询
SELECT * FROM (
    SELECT * FROM small_table WHERE simple_condition
) subquery;
性能优化技巧

1. 合理使用索引

-- 确保递归CTE中的连接字段有索引
CREATE INDEX idx_categories_parent_id ON categories(parent_id);
CREATE INDEX idx_employees_manager_id ON employees(manager_id);

-- 在递归查询中使用索引友好的条件
WITH RECURSIVE category_tree AS (
    SELECT id, parent_id, name, 0 as level
    FROM categories
    WHERE id = 1  -- 使用主键,利用主键索引
    
    UNION ALL
    
    SELECT c.id, c.parent_id, c.name, ct.level + 1
    FROM categories c
    JOIN category_tree ct ON c.parent_id = ct.id  -- 利用外键索引
    WHERE ct.level < 5
)
SELECT * FROM category_tree;

2. 控制递归深度

-- 设置合理的递归深度限制
SET max_stack_depth = '2MB';  -- PostgreSQL
-- 或在查询中使用WHERE条件限制深度

3. 优化数据类型和字段选择

-- ✅ 只选择必要的字段
WITH RECURSIVE slim_hierarchy AS (
    SELECT id, parent_id, level  -- 只选择必要字段
    FROM categories
    WHERE parent_id IS NULL
    
    UNION ALL
    
    SELECT c.id, c.parent_id, sh.level + 1
    FROM categories c
    JOIN slim_hierarchy sh ON c.parent_id = sh.id
    WHERE sh.level < 10
)
SELECT sh.id, sh.level, c.name  -- 在最后再JOIN获取详细信息
FROM slim_hierarchy sh
JOIN categories c ON sh.id = c.id;

内存使用优化

-- 大数据量递归查询的分批处理
WITH RECURSIVE batch_process AS (
    SELECT id, parent_id, name, 0 as level, 0 as batch_num
    FROM categories
    WHERE parent_id IS NULL
    
    UNION ALL
    
    SELECT c.id, c.parent_id, c.name, bp.level + 1, 
           CASE WHEN bp.level % 1000 = 0 THEN bp.batch_num + 1 
                ELSE bp.batch_num END
    FROM categories c
    JOIN batch_process bp ON c.parent_id = bp.id
    WHERE bp.level < 10000 AND bp.batch_num < 10
)
SELECT * FROM batch_process;

跨数据库支持

主流数据库CTE支持对比

数据库非递归CTE递归CTE关键差异版本要求
PostgreSQL✅ (WITH RECURSIVE)标准实现,支持物化控制8.4+
MySQL✅ (WITH RECURSIVE)8.0后支持,语法与PostgreSQL一致8.0+
SQL Server✅ (WITH)递归不需要RECURSIVE关键字2005+
Oracle✅ (WITH)支持子查询因子化9i+
SQLite✅ (WITH RECURSIVE)轻量实现3.8.3+

数据库特定语法示例

SQL Server
-- SQL Server递归CTE(无需RECURSIVE关键字)
WITH employee_cte AS (
    -- 锚点成员
    SELECT employee_id, manager_id, employee_name, 0 as level
    FROM employees
    WHERE manager_id IS NULL
    
    UNION ALL
    
    -- 递归成员
    SELECT e.employee_id, e.manager_id, e.employee_name, ec.level + 1
    FROM employees e
    INNER JOIN employee_cte ec ON e.manager_id = ec.employee_id
)
SELECT * FROM employee_cte
OPTION (MAXRECURSION 100);  -- SQL Server特有的递归限制语法
Oracle
-- Oracle的CTE(子查询因子化)
WITH 
sales_data AS (
    SELECT product_id, SUM(amount) as total_sales
    FROM sales
    WHERE sale_date >= DATE '2024-01-01'
    GROUP BY product_id
),
product_info AS (
    SELECT product_id, product_name, category_id
    FROM products
)
SELECT pi.product_name, sd.total_sales
FROM product_info pi
JOIN sales_data sd ON pi.product_id = sd.product_id
ORDER BY sd.total_sales DESC;
MySQL 8.0+
-- MySQL递归CTE
WITH RECURSIVE fibonacci AS (
    SELECT 0 as n, 0 as fib_n, 1 as fib_n_plus_1
    UNION ALL
    SELECT n + 1, fib_n_plus_1, fib_n + fib_n_plus_1
    FROM fibonacci
    WHERE n < 20
)
SELECT n, fib_n FROM fibonacci;

兼容性处理策略

旧版本MySQL替代方案
-- MySQL 5.x 使用临时表替代CTE
-- 替代普通CTE
CREATE TEMPORARY TABLE temp_order_stats AS
SELECT AVG(amount) as avg_amount FROM orders;

SELECT o.*, t.avg_amount
FROM orders o
CROSS JOIN temp_order_stats t
WHERE o.amount > t.avg_amount;

DROP TEMPORARY TABLE temp_order_stats;

-- 替代递归CTE(使用存储过程)
DELIMITER //
CREATE PROCEDURE GetEmployeeHierarchy(IN root_id INT)
BEGIN
    CREATE TEMPORARY TABLE temp_hierarchy (
        employee_id INT,
        level INT
    );
    
    INSERT INTO temp_hierarchy VALUES (root_id, 0);
    
    SET @level = 0;
    WHILE ROW_COUNT() > 0 AND @level < 10 DO
        INSERT INTO temp_hierarchy
        SELECT e.employee_id, @level + 1
        FROM employees e
        JOIN temp_hierarchy th ON e.manager_id = th.employee_id
        WHERE th.level = @level;
        
        SET @level = @level + 1;
    END WHILE;
    
    SELECT * FROM temp_hierarchy;
    DROP TEMPORARY TABLE temp_hierarchy;
END //
DELIMITER ;

实际应用场景

1. 数据分析与报表

销售漏斗分析
WITH sales_funnel AS (
    SELECT 
        'Leads' as stage,
        COUNT(*) as count,
        1 as stage_order
    FROM leads
    WHERE created_date >= '2024-01-01'
    
    UNION ALL
    
    SELECT 
        'Qualified Leads' as stage,
        COUNT(*) as count,
        2 as stage_order
    FROM leads
    WHERE status = 'qualified' AND created_date >= '2024-01-01'
    
    UNION ALL
    
    SELECT 
        'Opportunities' as stage,
        COUNT(*) as count,
        3 as stage_order
    FROM opportunities
    WHERE created_date >= '2024-01-01'
    
    UNION ALL
    
    SELECT 
        'Closed Won' as stage,
        COUNT(*) as count,
        4 as stage_order
    FROM opportunities
    WHERE status = 'won' AND created_date >= '2024-01-01'
),
funnel_with_conversion AS (
    SELECT 
        stage,
        count,
        stage_order,
        LAG(count) OVER (ORDER BY stage_order) as previous_count,
        CASE 
            WHEN LAG(count) OVER (ORDER BY stage_order) > 0 
            THEN ROUND(count::DECIMAL / LAG(count) OVER (ORDER BY stage_order) * 100, 2)
            ELSE 100.0
        END as conversion_rate
    FROM sales_funnel
)
SELECT 
    stage,
    count,
    conversion_rate || '%' as conversion_rate
FROM funnel_with_conversion
ORDER BY stage_order;
同期群分析(Cohort Analysis)
WITH customer_cohorts AS (
    SELECT 
        customer_id,
        DATE_TRUNC('month', MIN(order_date)) as cohort_month
    FROM orders
    GROUP BY customer_id
),
customer_activities AS (
    SELECT 
        cc.cohort_month,
        DATE_TRUNC('month', o.order_date) as activity_month,
        COUNT(DISTINCT o.customer_id) as active_customers
    FROM customer_cohorts cc
    JOIN orders o ON cc.customer_id = o.customer_id
    GROUP BY cc.cohort_month, DATE_TRUNC('month', o.order_date)
),
cohort_table AS (
    SELECT 
        cohort_month,
        activity_month,
        active_customers,
        EXTRACT(EPOCH FROM (activity_month - cohort_month)) / (30 * 24 * 60 * 60) as month_number
    FROM customer_activities
)
SELECT 
    cohort_month,
    month_number,
    active_customers,
    FIRST_VALUE(active_customers) OVER (
        PARTITION BY cohort_month 
        ORDER BY month_number
    ) as cohort_size,
    ROUND(
        active_customers::DECIMAL / 
        FIRST_VALUE(active_customers) OVER (
            PARTITION BY cohort_month 
            ORDER BY month_number
        ) * 100, 2
    ) as retention_rate
FROM cohort_table
ORDER BY cohort_month, month_number;

2. 层级数据处理

权限系统递归查询
-- 查询用户的所有有效权限(包括继承的权限)
WITH RECURSIVE user_permissions AS (
    -- 直接权限
    SELECT 
        up.user_id,
        up.permission_id,
        p.permission_name,
        'direct' as permission_source,
        0 as inheritance_level
    FROM user_permissions up
    JOIN permissions p ON up.permission_id = p.permission_id
    WHERE up.user_id = :user_id
    
    UNION ALL
    
    -- 角色继承的权限
    SELECT 
        ur.user_id,
        rp.permission_id,
        p.permission_name,
        'role:' || r.role_name as permission_source,
        1 as inheritance_level
    FROM user_roles ur
    JOIN roles r ON ur.role_id = r.role_id
    JOIN role_permissions rp ON r.role_id = rp.role_id
    JOIN permissions p ON rp.permission_id = p.permission_id
    WHERE ur.user_id = :user_id
    
    UNION ALL
    
    -- 角色层级继承的权限
    SELECT 
        up.user_id,
        rp.permission_id,
        p.permission_name,
        'inherited_role:' || pr.role_name as permission_source,
        up.inheritance_level + 1
    FROM user_permissions up
    JOIN user_roles ur ON up.user_id = ur.user_id
    JOIN role_hierarchy rh ON ur.role_id = rh.child_role_id
    JOIN roles pr ON rh.parent_role_id = pr.role_id
    JOIN role_permissions rp ON pr.role_id = rp.role_id
    JOIN permissions p ON rp.permission_id = p.permission_id
    WHERE up.inheritance_level < 3  -- 限制继承深度
)
SELECT DISTINCT 
    permission_id,
    permission_name,
    MIN(inheritance_level) as min_inheritance_level,
    STRING_AGG(DISTINCT permission_source, ', ') as sources
FROM user_permissions
GROUP BY permission_id, permission_name
ORDER BY min_inheritance_level, permission_name;
分类目录管理
-- 移动分类及其所有子分类到新的父分类下
WITH RECURSIVE category_subtree AS (
    -- 要移动的分类及其子分类
    SELECT id, parent_id, name, 0 as level
    FROM categories
    WHERE id = :category_to_move
    
    UNION ALL
    
    SELECT c.id, c.parent_id, c.name, cs.level + 1
    FROM categories c
    JOIN category_subtree cs ON c.parent_id = cs.id
),
update_plan AS (
    SELECT 
        cs.id,
        CASE 
            WHEN cs.level = 0 THEN :new_parent_id
            ELSE cs.parent_id
        END as new_parent_id
    FROM category_subtree cs
)
UPDATE categories 
SET parent_id = up.new_parent_id,
    updated_at = CURRENT_TIMESTAMP
FROM update_plan up
WHERE categories.id = up.id;

3. 时间序列数据处理

生成时间序列并填充缺失数据
WITH RECURSIVE date_series AS (
    SELECT DATE '2024-01-01' as date_val
    UNION ALL
    SELECT date_val + INTERVAL '1 day'
    FROM date_series
    WHERE date_val < DATE '2024-12-31'
),
daily_sales AS (
    SELECT 
        DATE(order_date) as sale_date,
        SUM(amount) as daily_amount,
        COUNT(*) as daily_orders
    FROM orders
    WHERE order_date >= '2024-01-01' 
      AND order_date < '2025-01-01'
    GROUP BY DATE(order_date)
)
SELECT 
    ds.date_val,
    COALESCE(dsales.daily_amount, 0) as amount,
    COALESCE(dsales.daily_orders, 0) as orders,
    -- 计算7天移动平均
    AVG(COALESCE(dsales.daily_amount, 0)) OVER (
        ORDER BY ds.date_val 
        ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
    ) as moving_avg_7_days
FROM date_series ds
LEFT JOIN daily_sales dsales ON ds.date_val = dsales.sale_date
ORDER BY ds.date_val;
会话分析
-- 分析用户会话,定义30分钟无活动为会话结束
WITH RECURSIVE user_sessions AS (
    SELECT 
        user_id,
        event_time,
        event_type,
        ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY event_time) as rn,
        event_time as session_start,
        1 as session_id
    FROM user_events
    WHERE user_id = :user_id
      AND event_time >= :start_date
    
    UNION ALL
    
    SELECT 
        ue.user_id,
        ue.event_time,
        ue.event_type,
        us.rn + 1,
        CASE 
            WHEN ue.event_time - us.event_time > INTERVAL '30 minutes'
            THEN ue.event_time
            ELSE us.session_start
        END,
        CASE 
            WHEN ue.event_time - us.event_time > INTERVAL '30 minutes'
            THEN us.session_id + 1
            ELSE us.session_id
        END
    FROM user_events ue
    JOIN user_sessions us ON ue.user_id = us.user_id 
                          AND ue.event_time > us.event_time
    WHERE ue.user_id = :user_id
      AND ue.event_time >= :start_date
      AND us.rn = (SELECT MAX(rn) FROM user_sessions WHERE user_id = us.user_id)
)
SELECT 
    session_id,
    session_start,
    MAX(event_time) as session_end,
    COUNT(*) as event_count,
    MAX(event_time) - session_start as session_duration
FROM user_sessions
GROUP BY session_id, session_start
ORDER BY session_start;

最佳实践

1. 命名规范

-- ✅ 推荐:使用描述性的CTE名称
WITH 
high_value_customers AS (...),
recent_orders AS (...),
product_performance AS (...)

-- ❌ 避免:使用模糊的名称
WITH 
cte1 AS (...),
temp AS (...),
data AS (...)

2. 结构化组织

-- ✅ 推荐:按逻辑顺序组织多个CTE
WITH 
-- 基础数据提取
raw_sales_data AS (
    SELECT customer_id, product_id, amount, sale_date
    FROM sales
    WHERE sale_date >= '2024-01-01'
),
-- 数据聚合
customer_totals AS (
    SELECT customer_id, SUM(amount) as total_spent
    FROM raw_sales_data
    GROUP BY customer_id
),
-- 分类标记
customer_segments AS (
    SELECT 
        customer_id,
        total_spent,
        CASE 
            WHEN total_spent > 10000 THEN 'VIP'
            WHEN total_spent > 5000 THEN 'Premium'
            ELSE 'Standard'
        END as segment
    FROM customer_totals
)
-- 最终查询
SELECT 
    c.customer_name,
    cs.total_spent,
    cs.segment
FROM customers c
JOIN customer_segments cs ON c.customer_id = cs.customer_id
ORDER BY cs.total_spent DESC;

3. 递归CTE最佳实践

始终包含终止条件
-- ✅ 推荐:明确的终止条件
WITH RECURSIVE hierarchy AS (
    SELECT id, parent_id, name, 0 as level
    FROM categories
    WHERE parent_id IS NULL
    
    UNION ALL
    
    SELECT c.id, c.parent_id, c.name, h.level + 1
    FROM categories c
    JOIN hierarchy h ON c.parent_id = h.id
    WHERE h.level < 10  -- 明确的深度限制
      AND c.parent_id IS NOT NULL  -- 防止NULL值问题
)
SELECT * FROM hierarchy;
循环检测
-- ✅ 推荐:检测和防止循环引用
WITH RECURSIVE safe_hierarchy AS (
    SELECT 
        id, 
        parent_id, 
        name, 
        0 as level,
        ARRAY[id] as path
    FROM categories
    WHERE parent_id IS NULL
    
    UNION ALL
    
    SELECT 
        c.id, 
        c.parent_id, 
        c.name, 
        sh.level + 1,
        sh.path || c.id
    FROM categories c
    JOIN safe_hierarchy sh ON c.parent_id = sh.id
    WHERE sh.level < 20
      AND NOT (c.id = ANY(sh.path))  -- 防止循环
)
SELECT id, name, level, array_to_string(path, ' -> ') as path
FROM safe_hierarchy;

4. 性能优化最佳实践

合理使用索引
-- 为递归查询创建合适的索引
CREATE INDEX idx_categories_parent_id ON categories(parent_id);
CREATE INDEX idx_categories_id_parent_id ON categories(id, parent_id);

-- 复合索引用于复杂递归查询
CREATE INDEX idx_employees_manager_dept ON employees(manager_id, department_id);
限制结果集大小
-- ✅ 推荐:在CTE中尽早过滤数据
WITH filtered_orders AS (
    SELECT customer_id, amount, order_date
    FROM orders
    WHERE order_date >= '2024-01-01'  -- 尽早过滤
      AND status = 'completed'
      AND amount > 0
),
customer_stats AS (
    SELECT 
        customer_id,
        COUNT(*) as order_count,
        SUM(amount) as total_amount
    FROM filtered_orders  -- 使用已过滤的数据
    GROUP BY customer_id
)
SELECT * FROM customer_stats
WHERE order_count >= 5;  -- 进一步过滤

常见陷阱与注意事项

1. 递归CTE陷阱

无限递归
-- ❌ 危险:可能导致无限递归
WITH RECURSIVE dangerous_recursion AS (
    SELECT 1 as n
    UNION ALL
    SELECT n + 1 FROM dangerous_recursion  -- 没有终止条件!
)
SELECT * FROM dangerous_recursion;

-- ✅ 安全:包含终止条件
WITH RECURSIVE safe_recursion AS (
    SELECT 1 as n
    UNION ALL
    SELECT n + 1 FROM safe_recursion WHERE n < 100
)
SELECT * FROM safe_recursion;
循环引用数据
-- 处理可能存在循环引用的数据
-- 假设categories表中存在循环引用:A -> B -> C -> A

-- ❌ 问题:可能导致无限递归
WITH RECURSIVE bad_hierarchy AS (
    SELECT id, parent_id, name FROM categories WHERE id = 1
    UNION ALL
    SELECT c.id, c.parent_id, c.name
    FROM categories c
    JOIN bad_hierarchy bh ON c.parent_id = bh.id
)
SELECT * FROM bad_hierarchy;

-- ✅ 解决:使用路径跟踪防止循环
WITH RECURSIVE good_hierarchy AS (
    SELECT id, parent_id, name, ARRAY[id] as path
    FROM categories WHERE id = 1
    UNION ALL
    SELECT c.id, c.parent_id, c.name, gh.path || c.id
    FROM categories c
    JOIN good_hierarchy gh ON c.parent_id = gh.id
    WHERE NOT (c.id = ANY(gh.path))
)
SELECT id, parent_id, name FROM good_hierarchy;

2. 性能陷阱

过度使用CTE
-- ❌ 过度使用:简单查询不需要CTE
WITH simple_cte AS (
    SELECT * FROM users WHERE status = 'active'
)
SELECT * FROM simple_cte WHERE age > 18;

-- ✅ 直接查询更简单高效
SELECT * FROM users 
WHERE status = 'active' AND age > 18;
大数据量递归
-- ❌ 问题:大数据量递归可能导致内存溢出
WITH RECURSIVE large_hierarchy AS (
    SELECT id, parent_id, name FROM large_table WHERE parent_id IS NULL
    UNION ALL
    SELECT lt.id, lt.parent_id, lt.name
    FROM large_table lt
    JOIN large_hierarchy lh ON lt.parent_id = lh.id
)
SELECT * FROM large_hierarchy;

-- ✅ 解决:分批处理或限制深度
WITH RECURSIVE controlled_hierarchy AS (
    SELECT id, parent_id, name, 0 as level FROM large_table WHERE parent_id IS NULL
    UNION ALL
    SELECT lt.id, lt.parent_id, lt.name, ch.level + 1
    FROM large_table lt
    JOIN controlled_hierarchy ch ON lt.parent_id = ch.id
    WHERE ch.level < 5  -- 限制深度
)
SELECT * FROM controlled_hierarchy;

3. 数据类型陷阱

UNION ALL类型不匹配
-- ❌ 问题:数据类型不匹配
WITH RECURSIVE type_mismatch AS (
    SELECT 1 as id, 'root' as name  -- name是VARCHAR
    UNION ALL
    SELECT id + 1, id + 1 FROM type_mismatch WHERE id < 5  -- name变成了INTEGER
)
SELECT * FROM type_mismatch;

-- ✅ 解决:确保类型一致
WITH RECURSIVE type_consistent AS (
    SELECT 1 as id, 'root' as name
    UNION ALL
    SELECT id + 1, CAST(id + 1 AS VARCHAR) FROM type_consistent WHERE id < 5
)
SELECT * FROM type_consistent;

4. NULL值处理

-- ✅ 正确处理NULL值
WITH RECURSIVE null_safe_hierarchy AS (
    SELECT id, parent_id, name, 0 as level
    FROM categories
    WHERE parent_id IS NULL  -- 明确处理NULL
    
    UNION ALL
    
    SELECT c.id, c.parent_id, c.name, nsh.level + 1
    FROM categories c
    JOIN null_safe_hierarchy nsh ON c.parent_id = nsh.id
    WHERE c.parent_id IS NOT NULL  -- 防止NULL值问题
      AND nsh.level < 10
)
SELECT * FROM null_safe_hierarchy;

高级用法

1. CTE与窗口函数结合

-- 计算每个产品的销售趋势
WITH monthly_sales AS (
    SELECT 
        product_id,
        DATE_TRUNC('month', order_date) as month,
        SUM(amount) as monthly_amount
    FROM orders
    WHERE order_date >= '2024-01-01'
    GROUP BY product_id, DATE_TRUNC('month', order_date)
),
sales_with_trends AS (
    SELECT 
        product_id,
        month,
        monthly_amount,
        LAG(monthly_amount) OVER (PARTITION BY product_id ORDER BY month) as prev_month_amount,
        AVG(monthly_amount) OVER (
            PARTITION BY product_id 
            ORDER BY month 
            ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
        ) as moving_avg_3_months
    FROM monthly_sales
)
SELECT 
    p.product_name,
    swt.month,
    swt.monthly_amount,
    swt.moving_avg_3_months,
    CASE 
        WHEN swt.prev_month_amount IS NULL THEN 'N/A'
        WHEN swt.monthly_amount > swt.prev_month_amount THEN 'Increasing'
        WHEN swt.monthly_amount < swt.prev_month_amount THEN 'Decreasing'
        ELSE 'Stable'
    END as trend
FROM sales_with_trends swt
JOIN products p ON swt.product_id = p.product_id
ORDER BY p.product_name, swt.month;

2. 递归CTE生成复杂序列

生成斐波那契数列
WITH RECURSIVE fibonacci AS (
    SELECT 
        1 as n,
        0::BIGINT as fib_current,
        1::BIGINT as fib_next
    
    UNION ALL
    
    SELECT 
        n + 1,
        fib_next,
        fib_current + fib_next
    FROM fibonacci
    WHERE n < 50 AND fib_next < 9223372036854775807  -- 防止溢出
)
SELECT n, fib_current as fibonacci_number
FROM fibonacci;
生成工作日序列
WITH RECURSIVE business_days AS (
    SELECT DATE '2024-01-01' as business_date
    WHERE EXTRACT(DOW FROM DATE '2024-01-01') BETWEEN 1 AND 5
    
    UNION ALL
    
    SELECT 
        CASE 
            WHEN EXTRACT(DOW FROM business_date + 1) = 6 THEN business_date + 3  -- 跳过周末
            WHEN EXTRACT(DOW FROM business_date + 1) = 0 THEN business_date + 2
            ELSE business_date + 1
        END
    FROM business_days
    WHERE business_date < DATE '2024-12-31'
),
business_days_with_holidays AS (
    SELECT bd.business_date
    FROM business_days bd
    LEFT JOIN holidays h ON bd.business_date = h.holiday_date
    WHERE h.holiday_date IS NULL  -- 排除节假日
)
SELECT business_date FROM business_days_with_holidays ORDER BY business_date;

3. CTE用于数据清洗和转换

-- 复杂的数据清洗流程
WITH 
-- 第一步:基础数据清洗
cleaned_raw_data AS (
    SELECT 
        customer_id,
        TRIM(UPPER(customer_name)) as customer_name,
        CASE 
            WHEN email ~* '^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$' 
            THEN LOWER(email)
            ELSE NULL
        END as email,
        CASE 
            WHEN phone ~ '^\d{10,15}$' THEN phone
            ELSE REGEXP_REPLACE(phone, '[^\d]', '', 'g')
        END as phone
    FROM raw_customer_data
    WHERE customer_name IS NOT NULL
),
-- 第二步:去重处理
deduplicated_data AS (
    SELECT DISTINCT ON (customer_name, email)
        customer_id,
        customer_name,
        email,
        phone,
        ROW_NUMBER() OVER (PARTITION BY customer_name, email ORDER BY customer_id) as rn
    FROM cleaned_raw_data
    WHERE email IS NOT NULL
),
-- 第三步:数据验证
validated_data AS (
    SELECT 
        customer_id,
        customer_name,
        email,
        phone,
        CASE 
            WHEN LENGTH(customer_name) < 2 THEN 'Invalid Name'
            WHEN email IS NULL THEN 'Invalid Email'
            WHEN LENGTH(phone) < 10 THEN 'Invalid Phone'
            ELSE 'Valid'
        END as validation_status
    FROM deduplicated_data
    WHERE rn = 1
)
-- 最终结果
SELECT 
    customer_id,
    customer_name,
    email,
    phone,
    validation_status
FROM validated_data
WHERE validation_status = 'Valid';

4. 递归CTE处理图结构

查找图中的所有路径
-- 在有向图中查找从起点到终点的所有路径
WITH RECURSIVE all_paths AS (
    -- 起始节点
    SELECT 
        start_node,
        end_node,
        ARRAY[start_node, end_node] as path,
        1 as path_length
    FROM graph_edges
    WHERE start_node = :start_point
    
    UNION ALL
    
    -- 扩展路径
    SELECT 
        ap.start_node,
        ge.end_node,
        ap.path || ge.end_node,
        ap.path_length + 1
    FROM all_paths ap
    JOIN graph_edges ge ON ap.end_node = ge.start_node
    WHERE NOT (ge.end_node = ANY(ap.path))  -- 避免循环
      AND ap.path_length < 10  -- 限制路径长度
)
SELECT 
    start_node,
    end_node,
    path,
    path_length
FROM all_paths
WHERE end_node = :end_point  -- 过滤到目标节点的路径
ORDER BY path_length, path;

总结

CTE的核心价值

  1. 代码可读性:将复杂查询分解为逻辑清晰的步骤
  2. 代码复用:在同一查询中多次引用相同的子查询结果
  3. 递归处理:优雅处理层级和树形结构数据
  4. 性能优化:通过物化避免重复计算

选择CTE的时机

  • 使用CTE:需要多次引用子查询结果、处理递归数据、提高复杂查询可读性
  • 避免CTE:简单的一次性查询、对性能要求极高的场景

关键注意事项

  1. 递归终止:始终包含明确的终止条件
  2. 循环检测:在可能存在循环的数据中使用路径跟踪
  3. 性能监控:关注CTE的执行计划和资源使用
  4. 类型一致:确保UNION ALL中的数据类型匹配
  5. 索引优化:为递归查询的连接字段创建合适的索引

最佳实践总结

  • 使用描述性的CTE名称
  • 按逻辑顺序组织多个CTE
  • 在CTE中尽早过滤数据
  • 合理控制递归深度
  • 正确处理NULL值
  • 定期监控和优化性能

CTE是SQL中强大而灵活的工具,掌握其正确使用方法能够显著提升SQL查询的质量和可维护性。在实际应用中,应根据具体场景选择合适的CTE类型,并遵循最佳实践以确保查询的正确性和性能。