目录

C-Dijkstra堆优化算法

目录

C++ Dijkstra堆优化算法

时间复杂度为:O((n+m)logn)

算法特点:非负边权、单源最短路、顶点数、边数<1000000,数据结构前置:领接表、哈希表、二叉堆

算法:

第一步,建图,任何算法我们都要去思考,用什么数据结构来存储,这个算法我们采用邻接表来存储,有时候输入数据,并不是我们期待的那样,所以需要对图进行一些处理,这就是建图的过程

第二步,辅助数组,对于图G = <V, E>,源点为s,dist[i]表示s到i的最短路,visited[i] 表示dist[i]是否已经确定(布尔值),即s到i的最短路,是否已经确定。

第三步,辅助堆,利用一个小顶堆heap存放二元组(v, dist[v]),小顶堆扮演的是优先队列作用,dist[v]值越小的,会从优先队列中优先出列。

第四步,初始化,初始化所有顶点的数据见下,

dist[i] = 无穷大(0 =< i =< n)

visited[i] = false

dist[s] = 0

heap.push(s, dist[s])

第五步,找距离最小的点,从小顶堆中不断弹出元素u,并且判断visited[u]是否为true,如果为true,则继续弹出;否则标记为true,并且从u出发,进行松弛操作,如果堆为空,算法结束。

第六步,松弛操作,更新从u出发,到达顶点v的最短路dist[v],

dist[v] = min(dist[v], dist[u] + w(u, v))

代码分析:第一步,定义距离二元组 Dist(v, w)

第二步,初始化邻接表

function initEdges(n, edges[maxn])

  for i -> (0, n-1)

    edges[i] = {}

第三步,邻接表加边,

function addEdge(edges[maxn], u, v, w)

  edges[u].append(Dist(v, w))

第四步,建图

addEdge(edges, u1, v1, w1)

addEdge(edges, u2, v2, w2)

第五步,框架代码

function DijkstraHeap(n, st, edges[maxn], d[maxn])

  heap = Heap()

  visited[maxn] = false

  dijkstraInit(n, st, heap, visited, d)

  while(not heap.empty())

    u = dijkstraFindMin(heap)

    dijkstraUpdate(u, edges, heap, visited, d)

第六步,初始化

function dijkstrainit(n, st, heap, visited[maxn][maxn])

  for i->(0, n-1)

    d[i] = inf

    visited[i] = false

  dist[st] = 0

  heap.push(Dist(st, d[st]))

第七步,获取最小值

function dijkstraFindMin(heap)

  s = heap.top()

  heap.pop()

  return s.v

第八步,松弛操作

function dijkstraUpdate(u, edges[maxn], heap, visited[maxn], d[maxn])

  if not visited[u]

    visited[u] = true

    for i-> (0, edges[u].size() - 1)

      v = edges[u][i].v

      w = edges[u][i].w

      if (d[u] + w < d[v])

         d[v] = d[u] + w

         heap.push(Dist(v, d[v]))

代码练习,对应蓝桥云课 Dijkstra求最短路2 代码见下


#include <iostream>
#include <vector>
#include <queue>

using namespace std;

#define inf 1000000001
#define maxn 100001
#define ValueType int

struct Dist{
  int v;
  ValueType w;
  Dist() {}
  Dist(int _v, ValueType _w): v(_v), w(_w) {}
  bool operator < (const Dist& d) const{
    return w > d.w;
  }
};

typedef priority_queue<Dist> Heap;

void addEdge(vector<Dist>* edges, int u, int v, ValueType w){
  edges[u].push_back(Dist(v, w));
}

void dijkstraInit(int n, int st, Heap& heap, bool *visited, ValueType* d){
  for(int i=0; i<n; ++i){
    d[i] = inf;
    visited[i] = false;
  }
  d[st] = 0;
  heap.push(Dist(st, d[st]));
}

int dijkstraFindMin(Heap& heap){
  Dist s = heap.top();
  heap.pop();
  return s.v;
}

void dijkstraUpdate(int u, vector<Dist>* edges, Heap& heap, bool *visited, ValueType* d){
  if(visited[u]){
    return;
  }
  visited[u] = true;
  for(int i=0; i<edges[u].size(); ++i){
    int v = edges[u][i].v;
    ValueType w = edges[u][i].w;
    if(d[u] + w < d[v]){
      d[v] = d[u] + w;
      heap.push(Dist(v, d[v]));
    }
  }
}

void DijkstraHeap(int n, int st, vector<Dist>* edges, ValueType* d){
  Heap heap;
  bool visited[maxn] = {false};
  dijkstraInit(n, st, heap, visited, d);
  while(!heap.empty()){
    int u = dijkstraFindMin(heap);
    dijkstraUpdate(u, edges, heap, visited, d);
  }

}

vector<Dist> edges[maxn];
ValueType d[maxn];

int main()
{
  int n, m;
  cin >> n >> m;
  while(m--){
    int u, v, w;
    cin >> u >> v >> w;
    --u, --v;
    addEdge(edges, u, v, w);
  }
  DijkstraHeap(n, 0, edges, d);
  if(d[n-1] == inf){
    cout << -1 << endl;
  }else{
    cout << d[n-1] << endl;
  }

  // 请在此输入您的代码
  return 0;
}

  代码练习 2 对应蓝桥云课 蓝桥王国 代码见下


#include <iostream>
#include <vector>
#include <queue>

using namespace std;

#define inf 1000000001000000001
#define maxn 300001
#define ValueType long long 

struct Dist{
  int v;
  ValueType w;
  Dist() {}
  Dist(int _v, ValueType _w): v(_v), w(_w) {}
  bool operator < (const Dist& d) const{
    return w > d.w;
  }
};

typedef priority_queue<Dist> Heap;

void addEdge(vector<Dist>* edges, int u, int v, ValueType w){
  edges[u].push_back(Dist(v, w));
}

void dijkstraInit(int n, int st, Heap& heap, bool *visited, ValueType* d){
  for(int i=0; i<n; ++i){
    d[i] = inf;
    visited[i] = false;
  }
  d[st] = 0;
  heap.push(Dist(st, d[st]));
}

int dijkstraFindMin(Heap& heap){
  Dist s = heap.top();
  heap.pop();
  return s.v;
}

void dijkstraUpdate(int u, vector<Dist>* edges, Heap& heap, bool *visited, ValueType* d){
  if(visited[u]){
    return;
  }
  visited[u] = true;
  for(int i=0; i<edges[u].size(); ++i){
    int v = edges[u][i].v;
    ValueType w = edges[u][i].w;
    if(d[u] + w < d[v]){
      d[v] = d[u] + w;
      heap.push(Dist(v, d[v]));
    }
  }
}

void DijkstraHeap(int n, int st, vector<Dist>* edges, ValueType* d){
  Heap heap;
  bool visited[maxn] = {false};
  dijkstraInit(n, st, heap, visited, d);
  while(!heap.empty()){
    int u = dijkstraFindMin(heap);
    dijkstraUpdate(u, edges, heap, visited, d);
  }

}

vector<Dist> edges[maxn];
ValueType d[maxn];

int main(){
  int n, m;
  cin >> n >> m;
  for(int i=0; i<m; ++i){
    int u, v, w;
    cin >> u >> v >> w;
    --u, --v;
    addEdge(edges, u, v, w);
  }
  DijkstraHeap(n, 0, edges, d);
  for(int i=0; i<n; ++i){
    if(i){
      cout << " ";
    }
    if(d[i] == inf){
      cout << "-1";
    }else{
      cout << d[i];
    }
  }
  cout << endl;
  return 0;
}