目录

离散化-线段树-二分查找3661可以被机器人摧毁的最大墙壁数目分数未知

【离散化 线段树 二分查找】3661可以被机器人摧毁的最大墙壁数目|分数未知

本文涉及知识点



3661. 可以被机器人摧毁的最大墙壁数目

一条无限长的直线上分布着一些机器人和墙壁。给你整数数组 robots ,distance 和 walls:
robots[i] 是第 i 个机器人的位置。
distance[i] 是第 i 个机器人的子弹可以行进的 最大 距离。
walls[j] 是第 j 堵墙的位置。
每个机器人有 一颗 子弹,可以向左或向右发射,最远距离为 distance[i] 米。
子弹会摧毁其射程内路径上的每一堵墙。机器人是固定的障碍物:如果子弹在到达墙壁前击中另一个机器人,它会 立即 在该机器人处停止,无法继续前进。
返回机器人可以摧毁墙壁的 最大 数量。
注意:
墙壁和机器人可能在同一位置;该位置的墙壁可以被该位置的机器人摧毁。机器人不会被子弹摧毁。

示例 1:
输入: robots = [4], distance = [3], walls = [1,10]
输出: 1
解释:
robots[0] = 4 向 左 发射,distance[0] = 3,覆盖范围 [1, 4],摧毁了 walls[0] = 1。
因此,答案是 1。
示例 2:
输入: robots = [10,2], distance = [5,1], walls = [5,2,7]

输出: 3

解释:
robots[0] = 10 向 左 发射,distance[0] = 5,覆盖范围 [5, 10],摧毁了 walls[0] = 5 和 walls[2] = 7。
robots[1] = 2 向 左 发射,distance[1] = 1,覆盖范围 [1, 2],摧毁了 walls[1] = 2。
因此,答案是 3。
示例 3:
输入: robots = [1,2], distance = [100,1], walls = [10]
输出: 0
解释:
在这个例子中,只有 robots[0] 能够到达墙壁,但它向 右 的射击被 robots[1] 挡住了,因此答案是 0。
提示:

1 <

r o b o t s . l e n g t h

= d i s t a n c e . l e n g t h <

10 5 1 <= robots.length == distance.length <= 10^5 1<=robots.length==distance.length<=105

1 <

w a l l s . l e n g t h <

10 5 1 <= walls.length <= 10^5 1<=walls.length<=105

1 <

r o b o t s [ i ] , w a l l s [ j ] <

10 9 1 <= robots[i], walls[j] <= 10^9 1<=robots[i],walls[j]<=109

1 <

d i s t a n c e [ i ] <

10 5 1 <= distance[i] <= 10^5 1<=distance[i]<=105
robots 中的所有值都是 互不相同 的

错误解法 线段树+ 动态规划

动态规划的状态表示

dp[i]表示 只摧毁位置 ≤ i \le i ≤i的墙,最后能销毁多少堵墙。且之后不会消耗 ≤ i \le i ≤i的墙。
最大值线段树maxTree记录最大值。

动态规划的顺序

按机器人的位置从小到大处理。

动态规划的转移方程

每个机器人枚举两种状态,向左射击,向右射击。

动态规划的初始值

全为0.

动态规划的返回值

maxTree的最大值。

错误原因

由于两个机器人的射击范围不能重叠,否则会重复统计。故向左射击不一定是最大射程,各射程要一一枚举。
robots = { 4,10 }, distance = { 3,3 }, walls = { 6,7,8 };
第二个机器人向左射击能到{7,8,9,10}。第一个机器人向右射击到7,第二各机器人向左射击到8,才是正解。

错误代码

template<class TSave, class TRecord >
class CRangUpdateLineTree
{
protected:
	virtual void OnQuery(TSave& ans,const TSave& save, const int& iSaveLeft, const int& iSaveRight) = 0;
	virtual void OnUpdate(TSave& save, const int& iSaveLeft, const int& iSaveRight, const TRecord& update) = 0;
	virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, const int& iSaveLeft, const int& iSaveRight) = 0;
	virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord) = 0;
};

template<class TSave, class TRecord >
class CVectorRangeUpdateLineTree : public CRangUpdateLineTree<TSave, TRecord>
{
public:
	CVectorRangeUpdateLineTree(int iEleSize, TSave tDefault, TRecord tRecordNull) :m_iEleSize(iEleSize), m_tDefault(tDefault)
		, m_save(iEleSize * 4, tDefault), m_record(iEleSize * 4, tRecordNull) {
		m_recordNull = tRecordNull;
	}
	void Update(int iLeftIndex, int iRightIndex, TRecord value)
	{
		Update(1, 0, m_iEleSize - 1, iLeftIndex, iRightIndex, value);
	}
	TSave Query(int leftIndex, int rightIndex) {
		return Query(leftIndex, rightIndex, m_tDefault);
	}
	TSave Query(int leftIndex, int rightIndex,const TSave& tDefault) {
		TSave ans = tDefault;
		Query(ans, 1, 0, m_iEleSize - 1, leftIndex, rightIndex);
		return ans;
	}
	//void Init() {
	//	Init(1, 0, m_iEleSize - 1);
	//}
	TSave QueryAll() {
		return m_save[1];
	}
	void swap(CVectorRangeUpdateLineTree<TSave, TRecord>& other) {
		m_save.swap(other.m_save);
		m_record.swap(other.m_record);
		std::swap(m_recordNull, other.m_recordNull);
		assert(m_iEleSize == other.m_iEleSize);
	}
protected:
	//void Init(int iNodeNO, int iSaveLeft, int iSaveRight)
	//{
	//	if (iSaveLeft == iSaveRight) {
	//		this->OnInit(m_save[iNodeNO], iSaveLeft);
	//		return;
	//	}
	//	const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
	//	Init(iNodeNO * 2, iSaveLeft, mid);
	//	Init(iNodeNO * 2 + 1, mid + 1, iSaveRight);
	//	this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO * 2], m_save[iNodeNO * 2 + 1], iSaveLeft, iSaveRight);
	//}
	void Query(TSave& ans,int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight) {
		if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {
			this->OnQuery(ans,m_save[iNodeNO], iSaveLeft, iSaveRight);
			return;
		}
		if (iSaveLeft == iSaveRight) {//没有子节点
			return;
		}
		Fresh(iNodeNO, iSaveLeft, iSaveRight);
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (mid >= iQueryLeft) {
			Query(ans,iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight);
		}
		if (mid + 1 <= iQueryRight) {
			Query(ans,iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight);
		}
	}
	void Update(int iNode, int iSaveLeft, int iSaveRight, int iOpeLeft, int iOpeRight, TRecord value)
	{
		if ((iOpeLeft <= iSaveLeft) && (iOpeRight >= iSaveRight))
		{
			this->OnUpdate(m_save[iNode], iSaveLeft, iSaveRight, value);
			this->OnUpdateRecord(m_record[iNode], value);
			return;
		}
		if (iSaveLeft == iSaveRight) {
			return;//没有子节点
		}
		Fresh(iNode, iSaveLeft, iSaveRight);
		const int iMid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (iMid >= iOpeLeft)
		{
			Update(iNode * 2, iSaveLeft, iMid, iOpeLeft, iOpeRight, value);
		}
		if (iMid + 1 <= iOpeRight)
		{
			Update(iNode * 2 + 1, iMid + 1, iSaveRight, iOpeLeft, iOpeRight, value);
		}
		// 如果有后代,至少两个后代
		this->OnUpdateParent(m_save[iNode], m_save[iNode * 2], m_save[iNode * 2 + 1], iSaveLeft, iSaveRight);
	}
	void Fresh(int iNode, int iDataLeft, int iDataRight)
	{
		if (m_recordNull == m_record[iNode])
		{
			return;
		}
		const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
		Update(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_record[iNode]);
		Update(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_record[iNode]);
		m_record[iNode] = m_recordNull;
	}
	vector<TSave> m_save;
	vector<TRecord> m_record;
	TRecord m_recordNull;
	TSave m_tDefault;
	const int m_iEleSize;
};

template<class TSave, class TRecord >
class CTreeRangeLineTree : public CRangUpdateLineTree<TSave, TRecord>
{
protected:
	struct CTreeNode
	{
		int Cnt()const { return m_iMaxIndex - m_iMinIndex + 1; }
		int m_iMinIndex;
		int m_iMaxIndex;
		TRecord record;
		TSave data;
		CTreeNode* m_lChild = nullptr, * m_rChild = nullptr;
	};
	CTreeNode* m_root;
	TSave m_tDefault;
	TRecord m_tRecordDef;
public:
	CTreeRangeLineTree(int iMinIndex, int iMaxIndex, TSave tDefault, TRecord tRecordDef) {
		m_tDefault = tDefault;
		m_tRecordDef = tRecordDef;
		m_root = CreateNode(iMinIndex, iMaxIndex);
	}
	void Update(int iLeftIndex, int iRightIndex, TRecord value)
	{
		Update(m_root, iLeftIndex, iRightIndex, value);
	}
	TSave QueryAll() {
		return m_root->data;
	}
	TSave Query(int leftIndex, int leftRight) {
		TSave ans = m_tDefault;
		Query(ans,m_root, leftIndex, leftRight);
		return ans;
	}
protected:
	void Query(TSave& ans, CTreeNode* node, int iQueryLeft, int iQueryRight) {
		if ((node->m_iMinIndex >= iQueryLeft) && (node->m_iMaxIndex <= iQueryRight)) {
			this->OnQuery(ans, node->data, node->m_iMinIndex, node->m_iMaxIndex);
			return;
		}
		if (1 == node->Cnt()) {//没有子节点
			return;
		}
		CreateChilds(node);
		Fresh(node);
		const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;
		if (mid >= iQueryLeft) {
			Query(ans, node->m_lChild, iQueryLeft, iQueryRight);
		}
		if (mid + 1 <= iQueryRight) {
			Query(ans, node->m_rChild, iQueryLeft, iQueryRight);
		}
	}
	void Update(CTreeNode* node, int iOpeLeft, int iOpeRight, TRecord value)
	{
		const int& iSaveLeft = node->m_iMinIndex;
		const int& iSaveRight = node->m_iMaxIndex;
		if ((iOpeLeft <= iSaveLeft) && (iOpeRight >= iSaveRight))
		{
			this->OnUpdate(node->data, iSaveLeft, iSaveRight, value);
			this->OnUpdateRecord(node->record, value);
			return;
		}
		if (1 == node->Cnt()) {//没有子节点
			return;
		}
		CreateChilds(node);
		Fresh(node);
		const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;
		if (mid >= iOpeLeft) {
			this->Update(node->m_lChild, iOpeLeft, iOpeRight, value);
		}
		if (mid + 1 <= iOpeRight) {
			this->Update(node->m_rChild, iOpeLeft, iOpeRight, value);
		}
		// 如果有后代,至少两个后代
		this->OnUpdateParent(node->data, node->m_lChild->data, node->m_rChild->data, node->m_iMinIndex, node->m_iMaxIndex);
	}
	void CreateChilds(CTreeNode* node) {
		if (nullptr != node->m_lChild) { return; }
		const int iSaveLeft = node->m_iMinIndex;
		const int iSaveRight = node->m_iMaxIndex;
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		node->m_lChild = CreateNode(iSaveLeft, mid);
		node->m_rChild = CreateNode(mid + 1, iSaveRight);
	}
	CTreeNode* CreateNode(int iMinIndex, int iMaxIndex) {
		CTreeNode* node = new CTreeNode;
		node->m_iMinIndex = iMinIndex;
		node->m_iMaxIndex = iMaxIndex;
		node->data = m_tDefault;
		node->record = m_tRecordDef;
		return node;
	}
	void Fresh(CTreeNode* node)
	{
		if (m_tRecordDef == node->record)
		{
			return;
		}
		CreateChilds(node);
		Update(node->m_lChild, node->m_lChild->m_iMinIndex, node->m_lChild->m_iMaxIndex, node->record);
		Update(node->m_rChild, node->m_rChild->m_iMinIndex, node->m_rChild->m_iMaxIndex, node->record);
		node->record = m_tRecordDef;
	}
};
	template<class TSave, class TRecord >
		class  CSetMaxLineTree : public CTreeRangeLineTree<TSave, TRecord>
		{
		public:
			using CTreeRangeLineTree<TSave, TRecord>::CTreeRangeLineTree;
		protected:
			virtual void OnQuery(TSave& ans, const TSave& save, const int& iSaveLeft, const int& iSaveRight) {
				ans = max(ans, save);
			}
			virtual void OnUpdate(TSave& save, const int& iSaveLeft, const int& iSaveRight, const TRecord& update) {
				save = update;
			}
			virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, const int& iSaveLeft, const int& iSaveRight) {
				par = max(left, r);
			}
			virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord)
			{
				old = newRecord;
			}
		};
		class Solution {
		public:
			int maxWalls(vector<int>& robots, vector<int>& distance, vector<int>& walls) {
				const int N = robots.size();
				const int M = (int)(1e9 + 2e5);
				sort(walls.begin(), walls.end());
				vector<pair<int, int>> rd;
				for (int i = 0; i < N; i++) {
					rd.emplace_back(robots[i], distance[i]);
				}	
				sort(rd.begin(), rd.end());
				vector<int> vLeft(N), vRight(N);				
				for (int i = 0; i < N;i++) {
					const auto& [pos, dis] = rd[i];
					const int iLeftRobot = i ? rd[i - 1].first : 1;
					vLeft[i] = max(iLeftRobot, pos - dis);		
					const int iRightPos = (i+1==N)? M : rd[i+1].first;
					vRight[i] = min(iRightPos, pos + dis);
				}
				CSetMaxLineTree<int, int> maxTree(0, M,0,0);
				for (int i = 0; i < N; i++) {
					const int x1 = max(1,vLeft[i]), x2 = rd[i].first, x3 = min(M,vRight[i]);
					const int cnt1 = upper_bound(walls.begin(), walls.end(), x2) - lower_bound(walls.begin(), walls.end(), x1);
					const int left = maxTree.Query(0, x1 - 1) + cnt1;
					const int cnt2 = upper_bound(walls.begin(), walls.end(), x3) - lower_bound(walls.begin(), walls.end(), x2);
					const int right = maxTree.Query(0, x2 - 1) + cnt2;
					maxTree.Update(x2,x2, left);
					maxTree.Update(x3, x3, right);
				}
				return maxTree.QueryAll();
			}
		}; 

正确解法

某个向右的机器人和某个向左的机器人射程重叠后。向右的机器人射程不变,向左的机器人缩短射程使之不重叠。向右射击仍然是一种状态,故只讨论向左。
令向左的机器人位于x2,向左能射击到x1。
则:射程非最大向左的最大值为 max ⁡ x 1 x 2 − 1 ( d p [ x ] + f ( x ) ) \max_{x1}^{x2-1}( dp[x] + f(x)) maxx1x2−1​(dp[x]+f(x)),其中f(x)是处于 x + 1 ∼ x 2 的墙数 x+1 \sim x2的墙数 x+1∼x2的墙数,令g(x)是 ≤ x \le x ≤x的墙数。
则 射程非最大向左的最大值为 max ⁡ x 1 x 2 − 1 ( d p [ x ] + g ( x 2 ) − g ( x ) )

g ( x 2 ) + max ⁡ x 1 x 2 − 1 ( d p [ x ] − g ( x ) ) \max_{x1}^{x2-1}( dp[x] +g(x2)-g(x))=g(x2)+\max_{x1}^{x2-1}( dp[x] -g(x)) maxx1x2−1​(dp[x]+g(x2)−g(x))=g(x2)+maxx1x2−1​(dp[x]−g(x))
我们用最大值线段树maxTree2记录:dp[x]−g(x)
向左射击的最大值为:max(射程非最大向左的最大值,射程最大向左的最大值)

向右也要枚举

比如:

robots = {3,5 }, distance = { 2,2 }, walls = { 4,6 };

令向右的机器人在x2,向右能射击到x3。为了避免和前面的机器人重叠,我将此机器人的射程调整为: x + 1 → x 3 x+1 \rightarrow x3 x+1→x3
则起点非x2向右的最大值为: max ⁡ x : x 2 x 3 − 1 d p [ x ] + ( x + 1 ∼ x 3 ) 的墙的个数

g ( x 3 ) + max ⁡ x : x 2 x 3 − 1 ( d p [ x ] − g ( x ) ) \max_{x:x2}^{x3-1}dp[x]+(x+1 \sim x3)的墙的个数=g(x3)+\max_{x:x2}^{x3-1}(dp[x]-g(x)) maxx:x2x3−1​dp[x]+(x+1∼x3)的墙的个数=g(x3)+maxx:x2x3−1​(dp[x]−g(x))
可以共用:maxTree2。

内存超限代码

template<class TSave, class TRecord >
class CSingeUpdateLineTree
{
protected:
	virtual void OnQuery(TSave& ans,const TSave& cur) = 0;
	virtual void OnUpdate(TSave& save, int iSave, const TRecord& update) = 0;
	virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, int iSaveLeft, int iSaveRight) = 0;
};

template<class TSave, class TRecord >
class CVectorSingUpdateLineTree : public CSingeUpdateLineTree<TSave, TRecord>
{
public:
	CVectorSingUpdateLineTree(int iEleSize, TSave tDefault) :m_iEleSize(iEleSize),m_save(iEleSize*4,tDefault), m_tDefault(tDefault){

	}
	void Update(int index, TRecord update) {
		Update(1, 0, m_iEleSize-1, index, update);
	}
	TSave Query(int leftIndex, int leftRight,TSave tDefault) {
		TSave ans = tDefault;
		Query(ans,1, 0, m_iEleSize - 1, leftIndex, leftRight);
		return ans;
	}
	TSave Query(int leftIndex, int leftRight) {		
		return Query(leftIndex,leftRight, m_tDefault);
	}
	void Init(std::function<void(TSave&,const int&)> fun) {
		Init(fun,1, 0, m_iEleSize - 1);
	}
	TSave QueryAll() {
		return m_save[1];
	}
protected:
	int m_iEleSize;
	void Init(std::function<void(TSave&, const int&)> fun,int iNodeNO, int iSaveLeft, int iSaveRight)
	{
		if (iSaveLeft == iSaveRight) {
			fun(m_save[iNodeNO], iSaveLeft);
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		Init(fun,iNodeNO * 2, iSaveLeft, mid);
		Init(fun,iNodeNO * 2 + 1, mid + 1, iSaveRight);
		this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO*2], m_save[iNodeNO*2+1], iSaveLeft, iSaveRight);
	}
	void Query(TSave& ans,int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight) {
		if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {
			this->OnQuery(ans,m_save[iNodeNO]);
			return;
		}
		if (iSaveLeft == iSaveRight) {//没有子节点
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (mid >= iQueryLeft) {
			Query(ans,iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight);
		}
		if (mid + 1 <= iQueryRight) {
			Query(ans,iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight);
		}
	}
	void Update(int iNodeNO, int iSaveLeft, int iSaveRight, int iUpdateNO, TRecord update) {
		if (iSaveLeft == iSaveRight)
		{
			this->OnUpdate(m_save[iNodeNO], iSaveLeft, update);
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (iUpdateNO <= mid) {
			Update(iNodeNO * 2, iSaveLeft, mid, iUpdateNO, update);
		}
		else {
			Update(iNodeNO * 2 + 1, mid + 1, iSaveRight, iUpdateNO, update);
		}
		this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO*2], m_save[iNodeNO*2+1], iSaveLeft, iSaveRight);
	}
	vector<TSave> m_save;
	const TSave m_tDefault;
};

template<class TSave, class TRecord >
class CTreeSingeLineTree : public CSingeUpdateLineTree<TSave, TRecord>
{
protected:
	struct CTreeNode
	{		
		int Cnt()const { return m_iMaxIndex - m_iMinIndex + 1; }
		int m_iMinIndex;
		int m_iMaxIndex;
		TSave data;
		CTreeNode* m_lChild=nullptr, *m_rChild=nullptr;
		~CTreeNode() {
			delete m_lChild; m_lChild = nullptr;
			delete m_rChild; m_rChild = nullptr;
		}
	};
	CTreeNode* m_root;
	TSave m_tDefault;
public:
	CTreeSingeLineTree(int iMinIndex, int iMaxIndex, TSave tDefault) {
		m_tDefault = tDefault;
		m_root = CreateNode(iMinIndex, iMaxIndex);
	}
	void Update(int index, TRecord update) {
		Update(m_root, index, update);
	}
	TSave QueryAll() {
		return m_root->data;
	}
	TSave Query(int leftIndex, int leftRight) {
		TSave ans = m_tDefault;
		Query(ans,m_root, leftIndex, leftRight);
		return ans;
	}
	~CTreeSingeLineTree() {
		delete m_root;
	}
protected:
	void Query(TSave& ans,CTreeNode* node, int iQueryLeft, int iQueryRight) {
		if ((node->m_iMinIndex >= iQueryLeft) && (node->m_iMaxIndex <= iQueryRight)) {
			this->OnQuery(ans,node->data);
			return;
		}
		if (1 == node->Cnt()) {//没有子节点
			return;
		}
		CreateChilds(node);
		const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;
		if (mid >= iQueryLeft) {
			Query(ans,node->m_lChild, iQueryLeft, iQueryRight);
		}
		if (mid + 1 <= iQueryRight) {
			Query(ans,node->m_rChild, iQueryLeft, iQueryRight);
		}
	}
	void Update(CTreeNode* node, int iUpdateNO, TRecord update) {
		if ((iUpdateNO < node->m_iMinIndex) || (iUpdateNO > node->m_iMaxIndex)) {
			return;
		}
		if (1 == node->Cnt()) {
			this->OnUpdate(node->data, node->m_iMinIndex, update);
			return;
		}
		CreateChilds(node);
		Update(node->m_lChild, iUpdateNO, update);
		Update(node->m_rChild, iUpdateNO, update);
		this->OnUpdateParent(node->data, node->m_lChild->data, node->m_rChild->data, node->m_iMinIndex, node->m_iMaxIndex);
	}
	void CreateChilds(CTreeNode* node) {
		if (nullptr != node->m_lChild) { return; }
		const int iSaveLeft = node->m_iMinIndex;
		const int iSaveRight = node->m_iMaxIndex;
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		node->m_lChild = CreateNode(iSaveLeft,mid);
		node->m_rChild = CreateNode(mid+1, iSaveRight);
	}
	CTreeNode* CreateNode(int iMinIndex, int iMaxIndex) {
		CTreeNode* node = new CTreeNode;
		node->m_iMinIndex = iMinIndex;
		node->m_iMaxIndex = iMaxIndex;
		node->data = m_tDefault;
		return node;
	}
};

		template<class TSave, class TRecord >
		class  CSetMaxLineTree : public CTreeSingeLineTree<TSave, TRecord>
		{
		public:
			using CTreeSingeLineTree<TSave, TRecord>::CTreeSingeLineTree;
		protected:		
			virtual void OnQuery(TSave& ans, const TSave& cur) {
				ans = max(ans, cur);
			}
			virtual void OnUpdate(TSave& save, int iSave, const TRecord& updatee) {
				save = updatee;
			}
			virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, int iSaveLeft, int iSaveRight) {
				par = max(left, r);
			}
		};
		class Solution {
		public:
			int maxWalls(vector<int>& robots, vector<int>& distance, vector<int>& walls) {
				const int N = robots.size();
				const int M = (int)(1e9 + 2e5);
				sort(walls.begin(), walls.end());
				vector<pair<int, int>> rd;
				for (int i = 0; i < N; i++) {
					rd.emplace_back(robots[i], distance[i]);
				}	
				sort(rd.begin(), rd.end());
				vector<int> vLeft(N), vRight(N);				
				for (int i = 0; i < N;i++) {
					const auto& [pos, dis] = rd[i];
					const int iLeftRobot = i ? rd[i - 1].first : 1;
					vLeft[i] = max(iLeftRobot, pos - dis);		
					const int iRightPos = (i+1==N)? M : rd[i+1].first;
					vRight[i] = min(iRightPos, pos + dis);
				}
				CSetMaxLineTree<int, int> maxTree(0, M,0), maxTree2(0, M, -1000'000);
				for (int i = 0; i < N; i++) {
					const int x1 = max(1,vLeft[i]), x2 = rd[i].first, x3 = min(M,vRight[i]);	
					const int g2 = upper_bound(walls.begin(), walls.end(), x2) - walls.begin();
					const int g3 = upper_bound(walls.begin(), walls.end(), x3) - walls.begin();
					const int cnt1 = upper_bound(walls.begin(), walls.end(), x2) - lower_bound(walls.begin(), walls.end(), x1);
					const int left = maxTree.Query(0, x1 - 1) + cnt1;
					const int cnt2 = upper_bound(walls.begin(), walls.end(), x3) - lower_bound(walls.begin(), walls.end(), x2);
					const int right = maxTree.Query(0, x2 - 1) + cnt2;	
					const int left2 = maxTree2.Query(x1,x2-1)+g2;
					const int right2 = maxTree2.Query(x2, x3 - 1) + g3;
					maxTree.Update(x2, max(left,left2));
					maxTree.Update(x3, max(right,right2));					
					maxTree2.Update(x2, max(left, left2) -g2);
					maxTree2.Update(x3, max(right, right2) -g3);
				}
				return maxTree.QueryAll();
			}
		}; 

空间超限的解决方法

一,离散化。
二,改用最大值树状数组。

核心代码

template<class T=int>
class CDiscretize //离散化
{
public:
	CDiscretize(vector<T> nums)
	{
		sort(nums.begin(), nums.end());
		nums.erase(std::unique(nums.begin(), nums.end()), nums.end());
		m_nums = nums;
		for (int i = 0; i < nums.size(); i++)
		{
			m_mValueToIndex[nums[i]] = i;
		}
	}
	int operator[](const T value)const
	{
		auto it = m_mValueToIndex.find(value);
		if (m_mValueToIndex.end() == it)
		{
			return -1;
		}
		return it->second;
	}
	int size()const
	{
		return m_mValueToIndex.size();
	}
	vector<T> m_nums;
protected:	
	unordered_map<T, int> m_mValueToIndex;
};

template<class TSave, class TRecord >
class CSingeUpdateLineTree
{
protected:
	virtual void OnQuery(TSave& ans,const TSave& cur) = 0;
	virtual void OnUpdate(TSave& save, int iSave, const TRecord& update) = 0;
	virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, int iSaveLeft, int iSaveRight) = 0;
};

template<class TSave, class TRecord >
class CVectorSingUpdateLineTree : public CSingeUpdateLineTree<TSave, TRecord>
{
public:
	CVectorSingUpdateLineTree(int iEleSize, TSave tDefault) :m_iEleSize(iEleSize),m_save(iEleSize*4,tDefault), m_tDefault(tDefault){

	}
	void Update(int index, TRecord update) {
		Update(1, 0, m_iEleSize-1, index, update);
	}
	TSave Query(int leftIndex, int leftRight,TSave tDefault) {
		TSave ans = tDefault;
		Query(ans,1, 0, m_iEleSize - 1, leftIndex, leftRight);
		return ans;
	}
	TSave Query(int leftIndex, int leftRight) {		
		return Query(leftIndex,leftRight, m_tDefault);
	}
	void Init(std::function<void(TSave&,const int&)> fun) {
		Init(fun,1, 0, m_iEleSize - 1);
	}
	TSave QueryAll() {
		return m_save[1];
	}
protected:
	int m_iEleSize;
	void Init(std::function<void(TSave&, const int&)> fun,int iNodeNO, int iSaveLeft, int iSaveRight)
	{
		if (iSaveLeft == iSaveRight) {
			fun(m_save[iNodeNO], iSaveLeft);
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		Init(fun,iNodeNO * 2, iSaveLeft, mid);
		Init(fun,iNodeNO * 2 + 1, mid + 1, iSaveRight);
		this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO*2], m_save[iNodeNO*2+1], iSaveLeft, iSaveRight);
	}
	void Query(TSave& ans,int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight) {
		if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {
			this->OnQuery(ans,m_save[iNodeNO]);
			return;
		}
		if (iSaveLeft == iSaveRight) {//没有子节点
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (mid >= iQueryLeft) {
			Query(ans,iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight);
		}
		if (mid + 1 <= iQueryRight) {
			Query(ans,iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight);
		}
	}
	void Update(int iNodeNO, int iSaveLeft, int iSaveRight, int iUpdateNO, TRecord update) {
		if (iSaveLeft == iSaveRight)
		{
			this->OnUpdate(m_save[iNodeNO], iSaveLeft, update);
			return;
		}
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		if (iUpdateNO <= mid) {
			Update(iNodeNO * 2, iSaveLeft, mid, iUpdateNO, update);
		}
		else {
			Update(iNodeNO * 2 + 1, mid + 1, iSaveRight, iUpdateNO, update);
		}
		this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO*2], m_save[iNodeNO*2+1], iSaveLeft, iSaveRight);
	}
	vector<TSave> m_save;
	const TSave m_tDefault;
};

template<class TSave, class TRecord >
class CTreeSingeLineTree : public CSingeUpdateLineTree<TSave, TRecord>
{
protected:
	struct CTreeNode
	{		
		int Cnt()const { return m_iMaxIndex - m_iMinIndex + 1; }
		int m_iMinIndex;
		int m_iMaxIndex;
		TSave data;
		CTreeNode* m_lChild=nullptr, *m_rChild=nullptr;
		~CTreeNode() {
			delete m_lChild; m_lChild = nullptr;
			delete m_rChild; m_rChild = nullptr;
		}
	};
	CTreeNode* m_root;
	TSave m_tDefault;
public:
	CTreeSingeLineTree(int iMinIndex, int iMaxIndex, TSave tDefault) {
		m_tDefault = tDefault;
		m_root = CreateNode(iMinIndex, iMaxIndex);
	}
	void Update(int index, TRecord update) {
		Update(m_root, index, update);
	}
	TSave QueryAll() {
		return m_root->data;
	}
	TSave Query(int leftIndex, int leftRight) {
		TSave ans = m_tDefault;
		Query(ans,m_root, leftIndex, leftRight);
		return ans;
	}
	~CTreeSingeLineTree() {
		delete m_root;
	}
protected:
	void Query(TSave& ans,CTreeNode* node, int iQueryLeft, int iQueryRight) {
		if ((node->m_iMinIndex >= iQueryLeft) && (node->m_iMaxIndex <= iQueryRight)) {
			this->OnQuery(ans,node->data);
			return;
		}
		if (1 == node->Cnt()) {//没有子节点
			return;
		}
		CreateChilds(node);
		const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;
		if (mid >= iQueryLeft) {
			Query(ans,node->m_lChild, iQueryLeft, iQueryRight);
		}
		if (mid + 1 <= iQueryRight) {
			Query(ans,node->m_rChild, iQueryLeft, iQueryRight);
		}
	}
	void Update(CTreeNode* node, int iUpdateNO, TRecord update) {
		if ((iUpdateNO < node->m_iMinIndex) || (iUpdateNO > node->m_iMaxIndex)) {
			return;
		}
		if (1 == node->Cnt()) {
			this->OnUpdate(node->data, node->m_iMinIndex, update);
			return;
		}
		CreateChilds(node);
		Update(node->m_lChild, iUpdateNO, update);
		Update(node->m_rChild, iUpdateNO, update);
		this->OnUpdateParent(node->data, node->m_lChild->data, node->m_rChild->data, node->m_iMinIndex, node->m_iMaxIndex);
	}
	void CreateChilds(CTreeNode* node) {
		if (nullptr != node->m_lChild) { return; }
		const int iSaveLeft = node->m_iMinIndex;
		const int iSaveRight = node->m_iMaxIndex;
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		node->m_lChild = CreateNode(iSaveLeft,mid);
		node->m_rChild = CreateNode(mid+1, iSaveRight);
	}
	CTreeNode* CreateNode(int iMinIndex, int iMaxIndex) {
		CTreeNode* node = new CTreeNode;
		node->m_iMinIndex = iMinIndex;
		node->m_iMaxIndex = iMaxIndex;
		node->data = m_tDefault;
		return node;
	}
};

			template<class TSave, class TRecord >
		class  CSetMaxLineTree : public CVectorSingUpdateLineTree<TSave, TRecord>
		{
		public:
			using CVectorSingUpdateLineTree<TSave, TRecord>::CVectorSingUpdateLineTree;
		protected:		
			virtual void OnQuery(TSave& ans, const TSave& cur) {
				ans = max(ans, cur);
			}
			virtual void OnUpdate(TSave& save, int iSave, const TRecord& updatee) {
				save = max(save,updatee);
			}
			virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, int iSaveLeft, int iSaveRight) {
				par = max(left, r);
			}
		};
		class Solution {
		public:
			int maxWalls(vector<int>& robots, vector<int>& distance, vector<int>& walls) {
				N = robots.size();				
				Init(robots,distance,walls);
				CSetMaxLineTree<int, int> maxTree(M+1,0), maxTree2(M+1, -1000'000);
				for (const auto&[x1,x2,x3]: m_xs) {		
					const int g2 = upper_bound(walls.begin(), walls.end(), x2) - walls.begin();
					const int g3 = upper_bound(walls.begin(), walls.end(), x3) - walls.begin();
					const int cnt1 = upper_bound(walls.begin(), walls.end(), x2) - lower_bound(walls.begin(), walls.end(), x1);
					const int left = maxTree.Query(0, x1 - 1) + cnt1;
					const int cnt2 = upper_bound(walls.begin(), walls.end(), x3) - lower_bound(walls.begin(), walls.end(), x2);
					const int right = maxTree.Query(0, x2 - 1) + cnt2;	
					const int left2 = maxTree2.Query(x1,x2-1)+g2;
					const int right2 = maxTree2.Query(x2, x3 - 1) + g3;
					maxTree.Update(x2, max(left,left2));
					maxTree.Update(x3, max(right,right2));					
					maxTree2.Update(x2, max(left, left2) -g2);
					maxTree2.Update(x3, max(right, right2) -g3);
				}
				return maxTree.QueryAll();
			}
			void Init(const vector<int>& robots, const vector<int>& distance,  vector<int>& walls) {
				vector<pair<int, int>> rd;
				sort(walls.begin(), walls.end());
				auto tmp = walls;
				tmp.emplace_back(INT_MIN / 2);//编码增加0,实际编码从1开始
				for (int i = 0; i < N; i++) {
					rd.emplace_back(robots[i], distance[i]);
					tmp.emplace_back(robots[i]);
				}
				CDiscretize<int> disc(tmp);
				for (auto& i : walls) {
					i = disc[i];
				}				
				sort(rd.begin(), rd.end());				
				for (int i = 0; i < N; i++) {
					const auto& [pos, dis] = rd[i];
					const int iLeftRobot = i ? rd[i - 1].first : 1;
					const int iLeft = max(iLeftRobot, pos - dis);
					const int iRightRobot = (i + 1 == N) ? (INT_MAX/2) : rd[i + 1].first;
					const int iRight = min(iRightRobot, pos + dis);
					const int x1 = lower_bound(disc.m_nums.begin(), disc.m_nums.end(), iLeft) - disc.m_nums.begin();
					const int x2 = disc[pos];
					const int x3 = upper_bound(disc.m_nums.begin(), disc.m_nums.end(), iRight) - disc.m_nums.begin()-1;
					m_xs.emplace_back(x1, x2, x3);
				}	
				M = disc.m_nums.size();
			}
			int N, M;
			vector<tuple<int, int, int>> m_xs;
		}; 

单元测试

vector<int> robots, distance,  walls;
		TEST_METHOD(TestMethod00)
		{
			robots = { 4,10 }, distance = { 3,3 }, walls = { 6,7,8 };
			auto res = Solution().maxWalls(robots, distance, walls);
			AssertEx(3, res);
		}
		TEST_METHOD(TestMethod01)
		{
			robots = {3,5 }, distance = { 2,2 }, walls = { 4,6 };
			auto res = Solution().maxWalls(robots, distance, walls);
			AssertEx(2, res);
		}
		TEST_METHOD(TestMethod11)
		{
			robots = { 4 }, distance = { 3 }, walls = { 1,10 };
			auto res = Solution().maxWalls(robots, distance, walls);
			AssertEx(1, res);
		}
		TEST_METHOD(TestMethod12)
		{
			robots = { 10,2 }, distance = { 5,1 }, walls = { 5,2,7 };
			auto res = Solution().maxWalls(robots, distance, walls);
			AssertEx(3, res);
		}
		TEST_METHOD(TestMethod13)
		{
			robots = { 1,2 }, distance = { 100,1 }, walls = { 10 };
			auto res = Solution().maxWalls(robots, distance, walls);
			AssertEx(0, res);
		}
		TEST_METHOD(TestMethod14)
		{
			robots = { 17, 59, 32, 11, 72, 18 }, distance = { 5, 7, 6, 5, 2, 10 },
				walls = {17, 25, 33, 29, 54, 53, 18, 35, 39, 37, 20, 14, 34, 13, 16, 58, 22, 51, 56, 27, 10, 15, 12, 23, 45, 43, 21, 2, 42, 7, 32, 40, 8, 9, 1, 5, 55, 30, 38, 4, 3, 31, 36, 41, 57, 28, 11, 49, 26, 19, 50, 52, 6, 47, 46, 44, 24, 48};
			auto res = Solution().maxWalls(robots, distance, walls);
			AssertEx(37, res);
		}	
		TEST_METHOD(TestMethod15)
		{
			robots = { 31,22,4,43,8,38,5,15,35,37,27,42,40,28,20,21 }, distance = { 3,5,5,7,8,1,10,7,9,6,3,4,4,5,7,4 },
				walls = { 34,74,54,46,79,89,7,73,12,27,44,5,62,43,60,71,10,63,41,77,33,91,32,53,66,51,78,18,61,6,8,24,23,81,3,25,40,85,84,15,52,48,17,59,55,64,50,21,88,36,2,16,80,69,22,87,1,28,65,31,83,26,67,72,29,75,57,9,30,86,39,37,13,19,56,68,35,90 };
			auto res = Solution().maxWalls(robots, distance, walls);
			AssertEx(41, res);
		}

简单版

性质一:如果机器人和墙挨着一起,此墙一定被摧毁。故只考虑不挨着机器人的墙。
性质二:由于子弹遇到机器人会停止,故墙只会被相邻的机器人摧毁。比赛的时候,没有挖掘到此性质

动态规划的状态表示

dp0 表示第 0 ∼ i 0 \sim i 0∼i号机器人都已经射击完毕,且最后一个机器人向左(右)射击能摧毁最后的墙数。
空间复杂度:O(n)
为了方便处理边界情况,增加一个机器人标兵,射击距离都是0,位置分别在正负无穷大。

动态规划的填表顺序

n = 1 to N 枚举后继状态和选择。

动态规划的转移方程

如果 i-1 和 i 都向左射击,两者不会摧毁同一道墙。
如果 i-1 向右和 i 向左射击,两者可能摧毁同一道墙。需要出度重复。i向右能够摧毁g1道墙,i-1向左能够摧毁g0道墙,i和i-1之间的机器人数量c,则重复的墙数为: m a x ( 0 , g 1 + g 0 − c ) max(0,g1+g0-c) max(0,g1+g0−c)。
如果i向右射击,i-1无论向左还是向右,两者都不会摧毁同一道墙。

动态规划的初始值

全为0。

动态规划的返回值

max ⁡ ( d p 0. b a c k ( ) , d p 1. b a c k ( ) ) \max(dp0.back(),dp1.back()) max(dp0.back(),dp1.back())

代码

class Solution {
		public:
			int maxWalls(vector<int>& robots, vector<int>& distance, vector<int>& walls) {
				const int N = robots.size();
				const int M = int(1e9 + 1e5 + 1);
				sort(walls.begin(), walls.end());
				vector<pair<int, int>> rd;
				for (int i = 0; i < N; i++) {
					rd.emplace_back(robots[i], distance[i]);
				}
				rd.emplace_back(INT_MIN / 2, 0);
				rd.emplace_back(INT_MAX / 2, 0);
				sort(rd.begin(), rd.end());
				vector<int> vLeft(N+2), vRight(N+2);
				for (int i = 0; i < rd.size(); i++) {
					const auto& [pos, dis] = rd[i];
					const int iLeftRobot = i ? rd[i - 1].first : -M;
					vLeft[i] = max(iLeftRobot, pos - dis-1);
					const int iRightRobot = (i + 1 == N+2) ? M : rd[i + 1].first;
					vRight[i] = min(iRightRobot, pos + dis+1);
				}
				auto Cnt = [&](int left, int r) {
					int ans = lower_bound(walls.begin(), walls.end(), r)- upper_bound(walls.begin(), walls.end(), left);
					return ans;
				};//(left,r)之间的墙数量,不包括left,r。
				vector<int> dp0(N + 2), dp1(N + 2);
				for (int n = 1; n <= N; n++) {
					dp1[n] = max(dp0[n - 1], dp1[n - 1]) + Cnt(rd[n].first,vRight[n]);
					const int g = Cnt(vLeft[n], rd[n].first);
					dp0[n] = dp0[n-1] + g;
					const int iRepeat =  g + Cnt(rd[n-1].first,vRight[n-1])- Cnt(rd[n - 1].first, rd[n].first);
					dp0[n] = max(dp0[n], dp1[n - 1] + g - max(0,iRepeat));
				}
				int cntSamePos = 0;
				for (const auto& pos : robots) {
					cntSamePos += Cnt(pos-1, pos+1);
				}
				return cntSamePos+max(dp0[N], dp1[N]);
			}
		};

https://img-blog.csdnimg.cn/8d37dcd13ddb4df9af8f95fefd86828d.gif#pic_center#pic_center

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《 》。
学习算法:按章节学习《 》,大量的题目和测试用例, 。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
员工说:技术至上,老板不信;投资人的代表说:技术至上,老板会信。
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。
https://i-blog.csdnimg.cn/blog_migrate/4b48f80cdf99b7ea9bda88ceb91d788f.gif#pic_center